Z01 – Functional neural circuit analysis of the rodent brain

Z01

graphical abstract Z01 2025-2028

The service project Z01 aims to provide state-of-the-art tools for the interrogation of neurocognitive circuits at the synaptic, cellular and circuit level. It provides engram technologies, support for virus production and experimentation with transgenic mice models. We have extended our approach by providing access to spatial transcriptomics. Spatial transcriptomics can be used to efficiently map the molecular identities of the various cell types in the brain by providing the transcriptomic profiles of individual cells and to resolve the complex spatial organization of cell types and their connectivity in a neurocognitive circuit.

Principal Investigators

CRC Member Thomas Nickl-Jockschat

Prof. Dr. Thomas Nickl-Jockschat

CRC 1436 Co-Spokesperson Michael Kreutz

Dr. Michael R. Kreutz

CRC 1436 member Oliver Stork

Prof. Dr. Oliver Stork

Dr. Michael R. Kreutz

Michael R. Kreutz is head of the Neuroplasticity research group at the Leibniz Institute for Neurobiology and he has a second affiliation at the Center for Molecular Neurobiology (ZMNH) in Hamburg where he is heading the Leibniz Group ‘Dendritic Organelles and Synaptic Function’. His research interest is in synapse biology. His work is concerned with fundamental questions on how synapses communicate with the nucleus, how gene activity-dependent gene expression feeds back to synaptic function and how this is related to the formation of a cellular engram and last but not least how the nanoscale organization of the synapse determines functional properties in the context of learning and memory.

Prof. Dr. Oliver Stork

Prof. Dr. Oliver Stork is head of the Department of Genetics & Molecular Neurobiology at the Institute of Biology at the Otto von Guericke University Magdeburg. His research is devoted to understanding molecular and cellular mechanisms underlying the formation and specification of emotional memories. His special focus is on the analysis of local circuit processes in the context of the formation of engram cell assemblies in the hippocampus. He will contribute his expertise in the establishment and integrative analysis of rodent models for behavioral and memory research to the CRC.

In addition to the SFB1436, Prof. Stork is a member of the Magdeburg Collaborative Research Center SFB854 and the German Center for Mental Health in Magdeburg, and serves as a spokesperson for various neuroscientific graduate schools, including the IRTG1436 (this program), the CBBS graduate program and the GRK2413 (deputy spokesperson).

Co-Workers

CRC 1436 member Rajeev Raman

Dr. Rajeev Raman

CRC 1436 member PingAn YuanXiang

Dr. Pingan Yuanxiang

Dr. Rajeev Raman

Rajeev Raman is originally from Ranchi, Jharkhand, India. He obtained his Ph.D. at the Center for Cellular and Molecular Biology (CCMB), Hyderabad, India. Since January 2016, he is working as a scientific employee at NPlast, (Dr Michael Kreutz Group, LIN, Magdeburg). Rajeev contributes to his work with a lot of experience and competence in protein biochemistry.

Dr. Pingan Yuanxiang

My name is PingAn YuanXiang and graduated from Shanghai, China. I studied in the major of Neurobiology at the Fudan University in Shanghai and completed my Ph.D. thesis in 2012. 
Since 2013 I work as a research scientist in Nplast at the LIN. My expertise is electrophysiology including field recordings and single-cell patch clamp and also combines with cell biological techniques. My main interest is related to molecular mechanisms of synaptic plasticity and aging regulator in brain function.

How is the activity of local neuronal networks visualized?

Z01 offers to CRC members a broad variety of genetically encoded tools that can trace and label activated neuronal ensembles, like CaMPARI 2, RAM and Dual e-GRASP).
Some of these methods also allow the use of opto and chemo-genetic tools, which ultimately gives the researchers control over behavior.

How can global neural networks be imaged?

When neuronal activity changes in a particular region, the blood supply to that region also changes. This mechanism, also known as neuro-vascular coupling, can be measured non-invasively with functional magnetic resonance imaging (fMRI). Thus, changes in individual hemodynamic parameters, such as blood flow/volume or blood oxygen saturation, are measured with a high spatial resolution (≤ 400 µm) in the entire brain of the studied animals (mouse, gerbil, or rat). As soon as in different regions the hemodynamic parameters change (correlate) in a similar way within a certain time frame, it is very likely that the neuronal activities present there are also similar, i.e. that these neuronal populations interact.

How to study the influence of local neural network activity on global neural networks?

There are a couple of molecular techniques which can manipulate the activity of specific neurons. Using these molecular techniques, such as the expression of DREADDs (Designer Receptor Exclusively Activated by Designer Drugs) or opsins in specific neurons, the activity in a corresponding local neuronal network can now be specifically altered, e.g. by giving an activator to the DREADDs or stimulating the opsins by laser light. If such a manipulation of a local neuronal network occurs during an fMRI measurement, possible changes of global neuronal networks also become measurable. I.e., comparison of fMRI activation patterns before and during stimulation of DREADDs or opsins shows which interactions between individual brain structures are regulated by the modulated local network.  

The goals of our project

In the individual subprojects of the CRC, different cellular mechanisms are investigated that can serve as a neural resource for cognitive flexibility and enable the potential transfer of this performance from one task to another. What all these approaches have in common is that they are mediated by a modification of local network properties, which in turn, in order to become behaviorally relevant, also require changes in global network properties. Therefore, in this central project, we offer methods to identify engram cells and their neuronal ensembles, as well as methods to measure local and global neuronal networks activity. Z01 works as a platform where participating labs can profit from the established tools and from the accumulating expertise of all users.

Look into the future

Central Project Z01 will continue to keep the CRC at the cutting edge of technology to map neural network activity in the context of neuronal resources at the micro-, meso-, and macroscopic levels. In addition, molecular biology techniques will be used to identify, in particular, neuronal networks responsible for engram formation. Targeted activation and thus more detailed characterization of these networks should provide a better understanding on the mechanisms of neural resource for cognitive flexibility.

Publications of the project Z01